更多>>精华博文推荐
更多>>人气最旺专家

柳露

领域:新中网

介绍:……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3...

晋闵公

领域:北青网焦点新闻

介绍:三、孟德尔遗传规律的现代解释基因的自由组合定律的实质是:等位基因同源染色体位于的分离或组合是互不干扰的;在减数分裂过程中,同源染色体上的等位基因分离的同时,自由组合。利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录

918搏天堂
本站新公告利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录
tcn | 2019-01-20 | 阅读(863) | 评论(923)
关键词:BOT模式;高校后勤设施;风险管理山东大学硕士学位论文AbstractAstheofmarketandofdevelopmenteconomydeepeningglobalization,forbetweencountriesconcentratesondemandcompetitiontalents,andhigh—q砌itytalentisacceleratetheoftalentteamwimincreasinglyurgent.Totrainingprofessionaltherevitalizationofandforhighereducation,allcollegeshi曲comprehensivequalityanduniversitiesinChinaaresuchexpandingrapidly.However,manyproblemsemergeasschooloffundsandshabbybuildings,poorinfrastructure,shortageexpansioninefficientatthecurrentstatusoflogisticsmanagement.Aimedimproving【阅读全文】
利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录
7hy | 2019-01-20 | 阅读(283) | 评论(161)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
p5w | 2019-01-20 | 阅读(870) | 评论(79)
;消防连廊;(四)燃气管道入廊特点;2、管材:根据四平市气象资料,对于中压管道常用到的Q235B、20#等碳钢管材使用温度下限均难以满足要求,设计中采用耐低温合金钢管材Q345E,该管材能通过-40℃低温冲击试验,符合四平市环境使用要求。【阅读全文】
6gw | 2019-01-20 | 阅读(167) | 评论(500)
……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3【阅读全文】
s6q | 2019-01-20 | 阅读(429) | 评论(232)
目前全世界有13亿人生活在绝对的贫困线下。【阅读全文】
sf6 | 2019-01-19 | 阅读(19) | 评论(873)
影响:取代了传统自由放任经济理论,成为各资本主义国家制定经济政策的主要依据;有利于资本主义国家经济的发展;(1)要大胆吸收资本主义先进文明成果;(2)要开拓进取,勇于创新,深化改革(3)将市场机制和政府干预有机统一(4)要关注弱势群体利益,建立健全社会保障体系;(5)注意化解社会矛盾,努力建设和谐社会。【阅读全文】
kys | 2019-01-19 | 阅读(395) | 评论(686)
冉启佑【41,高博禹,彭仕宓‘51将它分为油藏精细描述技术等6个方面。【阅读全文】
rfd | 2019-01-19 | 阅读(367) | 评论(877)
讲到那政治革命的结果,是建立民主立宪政体。【阅读全文】
利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录,利来国际AG旗舰厅登录
rfe | 2019-01-19 | 阅读(185) | 评论(914)
措施5、建立健全社会信用体系为什么◆必要性:①诚实守信是现代市场经济正常运行必不可少的条件。【阅读全文】
5vt | 2019-01-18 | 阅读(418) | 评论(367)
而一档这样体量的实验性综艺,在导演安德胜看来有生存的空间和价值。【阅读全文】
z4o | 2019-01-18 | 阅读(827) | 评论(68)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
4pl | 2019-01-18 | 阅读(660) | 评论(427)
“scratch是积木类型的,拼搭方便,直观,很容易就能让小朋友有成就感,所以很多地方都在学。【阅读全文】
p4j | 2019-01-18 | 阅读(202) | 评论(255)
本文利用二次轧制后处理方法对钢铜石墨复合板进行实验,提出了将单道次大压下率轧制产生的横向上的不均匀变形,分解到多道次小压下率变形当中,以提升复合板界面剪切强度的均匀性。【阅读全文】
wg3 | 2019-01-17 | 阅读(724) | 评论(482)
关键词:BOT模式;高校后勤设施;风险管理山东大学硕士学位论文AbstractAstheofmarketandofdevelopmenteconomydeepeningglobalization,forbetweencountriesconcentratesondemandcompetitiontalents,andhigh—q砌itytalentisacceleratetheoftalentteamwimincreasinglyurgent.Totrainingprofessionaltherevitalizationofandforhighereducation,allcollegeshi曲comprehensivequalityanduniversitiesinChinaaresuchexpandingrapidly.However,manyproblemsemergeasschooloffundsandshabbybuildings,poorinfrastructure,shortageexpansioninefficientatthecurrentstatusoflogisticsmanagement.Aimedimproving【阅读全文】
btp | 2019-01-17 | 阅读(899) | 评论(921)
第二种定义法是按材料的力学性能来分类,可分为低强度钢、高强钢和超高强钢。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-20

利来娱乐网 利来娱乐w66 利来国际老牌博彩 w66利来国际 w66.com利来国际
利来国际最老牌手机板 利来国际最给利的老牌最新 利莱国际w66 利来国际ag国际厅 利来国际最给利的老牌
利来国际娱乐 w66利来国际 利来国际官网 利来国际手机版
利来国际w66平台 利来娱乐国际 利来娱乐ag旗舰厅 利来国际w66网页版 利来国际w66手机版
罗甸县| 岚皋县| 弥勒县| 赫章县| 枣阳市| 阿鲁科尔沁旗| 阳东县| 达拉特旗| 聂拉木县| 苍梧县| 攀枝花市| 民权县| 井研县| 报价| 怀化市| 常熟市| 武清区| 老河口市| 新闻| 淮南市| 静安区| 米易县| 旬阳县| 沙洋县| 多伦县| 永德县| 桐乡市| 南丰县| 高阳县| 巢湖市| 英山县| 兴山县| 凤阳县| 依兰县| 祁门县| 三原县| 正安县| 紫金县| 无为县| 子长县| 鹤岗市| http://m.46278453.cn http://m.61830378.cn http://m.61656307.cn http://m.60600503.cn http://m.03036922.cn http://m.31277735.cn